
Lecture 10:
 Machine Learning Compiler and

System

2

Some Notes
● First round of team meeting on Dec 1 and Dec 2.
● Lab 2 grades have been posted.
● Lab 3 is due this Sunday.
● Will have the office hour on Thursday 6-7pm.
● Midterm grade will be posted by this weekend.
● Will add extra-credit quiz

3

Recap
● Speculative Decoding
● Distributed DNN Training
● Distributed DNN Inference
● Federated Learning

4

Topics
● Federated Learning (Continue)
● Machine Learning Compiler
● Machine Learning System

5

Federated Learning
● Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4)

Train

(x1,y1) (x2,y2) (x3,y3) (x4,y4)
Train Train Train

||y1-x1||2 ||y2-x2||2 ||y3-x3||2 ||y4-x4||2

● Non-iid training data distribution
● Heterogeneity among the edge

devices
● Communication error

6

Federated Learning

Central
node

Edge
nodes

Aggregate

Train Train Train Train

● Federated learning is a machine learning technique
that allows the training of models across multiple
decentralized nodes holding local data samples,
without exchanging their data.

● This approach enhances privacy, user can train the
powerful DNN model without sharing the dataset.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

7

FedAvg

Global
model

● A global model is initialized on the central node and sent
to all participating nodes .

Step 1

For each i

Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

8

FedAvg

Global
model

Step 2

● Each node i trains the global model locally
using its own data for a few epochs.

● The length of local training process may vary.

Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

9

FedAvg

● Local updates are sent from each node to the central
node.

Aggregate

Step 3
Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

10

FedAvg

Aggregate

Step 4
● The central node aggregates the local updates

to update the global model.
Central
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.

11

Federated Learning Problems: Non-IID
● However, in FL, the data distributed across different devices or clients is not drawn from

the same statistical distribution.

● Unlike the scenario distributed training, where the training data are randomly distributed.
For FL, the data stored in each device is highly biased.

Cloud

User
devices

Aggregate● This may lead to significant accuracy degradation
for the global model.

12

Federated Learning Problems: Heterogeneity

Cloud

User
devices

Aggregate

● Different edge device may have different
processing speed.

● This will cause the total latency of each training
round bottlenecked by the straggler, leading to a
slow convergence of the training process.

13

Federated Learning Problems:
Communication

Cloud

User
devices

Aggregate

Comm
error

● The communication between edge devices and
central cloud may incur transmission loss or error.

● This will impact the training latency and accuracy.

14

Federated Learning Problems: Privacy

Cloud

User
devices

Aggregate

● The attacker can leverage the transmitted gradient
to reconstruct the original input training data.

● This will lead to privacy leakage.

15

Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● The training sets are evenly partitioned
into 10 clients.

● For IID setting, each client is randomly
assigned a uniform distribution over 10
classes.

● For non-IID setting, the data is sorted
by class and divided to create two
extreme cases: (a) 1-class non-IID,
where each client receives data
partition from only a single class, and
(b) 2-class non-IID, where the sorted
data is divided into 20 partitions and
each client is randomly assigned 2
partitions from 2 classes.

16

Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● We propose a data-sharing strategy to improve FedAvg with non-IID data by creating a small
subset of data which is globally shared between all the edge devices.

● Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only
5% globally shared data.

17

FedProx

● We add an extra term to minimize the l2
distance between the initial weight wt and
the learned weight w.

● This loss ensures that the learnt w is not
too different from the original w.

Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2
(2020): 429-450.

18

Federated Learning Problems: Heterogeneity

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

DNN mapping

Cloud

Compete
DNN model

User
devices

● End devices will have heterogeneous
system configuration.

● HeteroFL partitions and assigns the
DNN based on the processing power
of each device.

● Each device only train a subset of the
DNN model.

19

HeteroFL

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).

● Each edge device will be assigned with
part of the neural network to perform local
training based on its computational
complexity.

20

Federated Learning Problems:
Communication

Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), 954–964. IEEE.

● uj denotes the sign of the model weight after local updates.
● Our solution dynamically identifies relevant local updates and excludes

those irrelevant from being.
● Only the local device with high relevance will transmit their weight to the

central server.

21

FedMARL

● Our objective is to maximize the accuracy of the global model while minimizing the total processing latency
and communication cost.

● w1,w2,w3 are the importance of the objectives controlled by the FL application designers.
● The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL

problem.

Final model
Accuray

Total Training
Latency Total Bandwidth

Client
Selection

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.

22

FedMARL

● In FedMarl, each client device n relies on an MARL agent at the central server to make its
participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP)
that is cheap to implement.

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.

23

FedMARL

● Every random dropping is better than FedAvg.
● FedMarl is much better than random dropping and FedAvg.

24

Distributed LLM Inference with Speculative Decoding

● Speculative decoding provides a
lossless solution for distributed
LLM execution.

● A small draft model can execute
in sensor to produce draft tokens,
and then send to aggregator for
verification.

Li, Tianhong, et al. "Autoregressive Image Generation without Vector Quantization." arXiv
preprint arXiv:2406.11838 (2024).

25

DLoRA: Distributed parameter-efficient
fine-tuning solution for large language model

Gao, Chao, and Sai Qian Zhang. "Dlora: Distributed parameter-efficient fine-tuning solution for large language model."
EMNLP (2024).

● LLMs need to be finetuned in real time to better adapted to the downstream tasks.
● For resource-limited device, this finetuning process will consume a lot of latency and power.
● We propose distributed LLM finetuning techniques to deployed over the edge devices.

26

Topics
● Federated Learning (Continue)
● Deep Learning Software/Compiler
● Machine Learning System

27

 ML Software–Compiler stack
ML Frameworks

PyTorch, TensorFlow, Chainer,
Caffe, Theano

Intermediate Representation (IR)
& Graph Optimization Layer

TorchDynamo, FX, ONNX

● Converts model definitions into an
analyzable graph IR for optimization.

● High-level interfaces where models
are defined, trained, and debugged.

IML Compiler / Code Generation
Layer

 TVM, Triton, ONNX

● Translates the IR into optimized kernels and
executable code for specific devices.

Kernel Library
cuDNN, cuBLAS, CUTLASS

Hardware Backend
CPU, GPU, AI Accelerator

● The physical devices executing the
compiled and optimized models.

● Executes optimized kernels, manages device
memory, and provides primitives.

28

Deep Learning Frameworks
Graph Mode Eager Mode

● Graph mode: where they expose a graph building API that requires users to first
construct a graph and then later execute that graph.

● Eager mode: meaning operations are executed immediately as they are called in
Python, rather than being added to a static computation graph (as in early TensorFlow).

29

Deep Learning Frameworks
Graph Mode Eager Mode

● Graph mode: where they expose a graph building API that requires users to first
construct a graph and then later execute that graph.

● Eager mode: meaning operations are executed immediately as they are called in
Python, rather than being added to a static computation graph (as in early TensorFlow).

30

Pytorch

● Inherit from Chainer.
● DNN models can be programmed. API is defined to make user freely select the layer configuration.
● This “everything is a just a program” philosophy is not limited to just the models, and applies to

optimizers and data loaders as well.

31

Pytorch
● PyTorch allows for bidirectional exchange of data with external libraries.

○ For example, it provides a mechanism to convert between NumPy arrays and
PyTorch tensors using the torch.from_numpy() function and .numpy() tensor
method.

○ Pytorch has implemented an automatic differentiation functionality to automatically
performance the gradient computation.

import torch
x = torch.tensor(2.0, requires_grad=True)
y = x*2+x*3

y.backward()

print(x.grad)

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance
deep learning library." Advances in neural information processing
systems 32 (2019).

2x 3x

x

y

🗙 🗙

+

2 3

32

Pytorch
● What if the function is not differentiable? How to generate gradient?

○ Subgradients or Piecewise Derivatives
○ Approximation Gradients
○ Customized gradient definition
○ Compilation Error

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural
information processing systems 32 (2019).

33

Pytorch
● Subgradients or Piecewise Derivatives

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural
information processing systems 32 (2019).

import torch
x = torch.tensor(0.0, requires_grad=True)
y = torch.abs(x)
y.backward()
print(x.grad) # prints 0.0

● Straight-Through Estimator (STE)
def binary_step_ste(x):
 y = (x > 0).float()
 y.backward = lambda grad: grad #
approximate grad as 1

● Customized gradient definition

class CustomOp(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.save_for_backward(x)
 return torch.sign(x)
 @staticmethod
 def backward(ctx, grad_output):
 x, = ctx.saved_tensors
 grad_input = grad_output * (x.abs()
<= 1).float() # custom surrogate
 return grad_input

34

Pytorch
● PyTorch maintains a strict separation between its control (i.e. program branches, loops) and data

flow (i.e. tensors and the operations performed on them).

● The resolution of the control flow is handled by Python and optimized C++ code executed on the
host CPU, and result in a linear sequence of operator invocations on the device. Operators can be
run either on CPU or on GPU.

● Memory allocation is first performed on the CPU, which subsequently manages the allocation and
mapping on the GPU.

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural
information processing systems 32 (2019).

35

 ML Software–Compiler stack
ML Frameworks

PyTorch, TensorFlow, Chainer,
Caffe, Theano

Intermediate Representation (IR)
& Graph Optimization Layer

TorchDynamo, FX, ONNX

● Converts model definitions into an analyzable graph
Intermediate Representation (IR) for optimization.

● High-level interfaces where models
are defined, trained, and debugged.

ML Compiler / Code Generation
Layer

 TVM, Triton, ONNX

● Translates the IR into optimized kernels and
executable code for specific devices.

Kernel Library
cuDNN, cuBLAS, CUTLASS

Hardware Backend
CPU, GPU, AI Accelerator

● The physical devices executing the
compiled and optimized models.

● Executes optimized kernels, manages device
memory, and provides primitives.

36

TensorFlow
● Open-source ML framework by Google (2015)
● Supports CPU, GPU, TPU acceleration

○ Neural networks (CNNs, RNNs, Transformers)
○ Reinforcement learning
○ Signal processing and scientific computing

● TensorFlow builds a static computation graph (predefined dataflow)
○ Graph nodes = operations
○ Edges = data (tensors)

● Optimizable and deployable on different hardware
● Enables parallelism and graph-level optimizations

Abadi, Martín, et al. "{TensorFlow}: a system for {Large-Scale} machine learning." 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 2016.

37

TensorFlow
import tensorflow as tf

x = tf.constant(3.0)
y = tf.constant(4.0)
z = x * y # executed immediately
print(z)

tf.Tensor(12.0, shape=(), dtype=float32)

import tensorflow as tf

x = tf.constant(3.0)
y = tf.constant(4.0)
z = x * y # <-- nothing runs yet, just builds the
graph
print(z)

Tensor("mul:0", shape=(), dtype=float32)

with tf.Session() as sess:
 print(sess.run(z)) # Output: 12.0

Abadi, Martín, et al. "{TensorFlow}: a system for {Large-Scale} machine learning." 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 2016.

38

x

Graph-level Optimization
import torch
x = torch.tensor(2.0, requires_grad=True)
y = x*2+x*3

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural
information processing systems 32 (2019).

2x 3x

x

y

🗙 🗙

+
import torch
x = torch.tensor(2.0, requires_grad=True)
y = x*(2+3)

2 3 2

+

3

5

🗙

y

The downside of eager mode frameworks is
that they make it harder to apply graph-level
optimizations through compilers.

39

Torch.fx
from torch.fx import symbolic_trace

model = RedundantModel()
gm = symbolic_trace(model)
print(gm.graph)

import torch
import torch.nn as nn
import torch.nn.functional as F

class RedundantModel(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(4, 8)
 self.fc2 = nn.Linear(8, 8)
 self.fc3 = nn.Linear(8, 2)

 def forward(self, x):
 x = self.fc1(x)
 x = F.relu(x)
 x = F.relu(x) # redundant ReLU
 x = self.fc2(x)
 x = F.relu(x)
 return self.fc3(x)

Ansel, Jason, et al. "Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation." Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2. 2024.

graph():
 %x = placeholder[target=x]
 %fc1 = call_module[target=fc1](args=(%x,), kwargs={})
 %relu_1 = call_function[target=torch.nn.functional.relu](args=(%fc1,), kwargs={})
 %relu_2 = call_function[target=torch.nn.functional.relu](args=(%relu_1,), kwargs={})
 %fc2 = call_module[target=fc2](args=(%relu_2,), kwargs={})
 %relu_3 = call_function[target=torch.nn.functional.relu](args=(%fc2,), kwargs={})
 %fc3 = call_module[target=fc3](args=(%relu_3,), kwargs={})
 return %fc3

40

Torch.fx

Ansel, Jason, et al. "Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation." Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2. 2024.

def remove_redundant_relu(gm):
 new_graph = torch.fx.Graph()
 env = {}

 last_op = None
 for node in gm.graph.nodes:
 if node.op == 'call_function' and node.target == torch.nn.functional.relu:
 # Skip consecutive ReLU nodes
 if last_op == torch.nn.functional.relu:
 continue
 new_node = new_graph.node_copy(node, lambda x: env[x])
 env[node] = new_node
 last_op = node.target if node.op == 'call_function' else None

 gm_optimized = torch.fx.GraphModule(gm, new_graph)
 return gm_optimized

Torch.fx provides the flexibility to modify and
transform the computation graph, enabling
performance and efficiency improvements.

41

 ML Software–Compiler stack
ML Frameworks

PyTorch, TensorFlow, Chainer,
Caffe, Theano

Intermediate Representation (IR)
& Graph Optimization Layer

TorchDynamo, FX, ONNX

● Converts model definitions into an
analyzable graph IR for optimization.

● High-level interfaces where models
are defined, trained, and debugged.

ML Compiler / Code Generation
Layer

 TVM, Triton, ONNX

● Translates the IR into optimized kernels and
executable code for specific devices.

Kernel Library
cuDNN, cuBLAS, CUTLASS

Hardware Backend
CPU, GPU, AI Accelerator

● The physical devices executing the
compiled and optimized models.

● Executes optimized kernels, manages device
memory, and provides primitives.

42

Triton
● An open-source compiler and language (originally by Harvard/OpenAI, now integrated

into PyTorch)

● Allows writing custom GPU kernels in Python, achieving CUDA-level performance with
much simpler code

● Automatic tiling & vectorization for performance portability

● Fusion-friendly: easily integrates with PyTorch’s graph optimizers

Tillet, Philippe, Hsiang-Tsung Kung, and David Cox. "Triton: an intermediate language and compiler for tiled neural
network computations." Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. 2019.

43

Triton
● Writing efficient GPU kernels in CUDA is

complex and error-prone.

● Researchers often need custom fused
kernels beyond what cuDNN/cuBLAS
offer.

● Frameworks like PyTorch needed a
flexible but high-performance solution.

● Triton bridges this gap: Python-like
syntax with compiler-grade optimization.

Tillet, Philippe, Hsiang-Tsung Kung, and David Cox. "Triton: an intermediate language and compiler for tiled neural
network computations." Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. 2019.

import triton
import triton.language as tl

@triton.jit
def matmul_kernel(a_ptr, b_ptr, c_ptr, M, N, K):
 pid = tl.program_id(0)
 row = pid * 16 + tl.arange(0, 16)
 col = tl.arange(0, 16)
 a = tl.load(a_ptr + row[:, None] * K + tl.arange(0, K))
 b = tl.load(b_ptr + tl.arange(0, K)[:, None] * N + col)
 c = tl.dot(a, b)
 tl.store(c_ptr + row[:, None] * N + col, c)

44

 ML Software–Compiler stack
ML Frameworks

PyTorch, TensorFlow, Chainer,
Caffe, Theano

Intermediate Representation (IR)
& Graph Optimization Layer

TorchDynamo, FX, ONNX

● Converts model definitions into an
analyzable graph IR for optimization.

● High-level interfaces where models
are defined, trained, and debugged.

ML Compiler / Code Generation
Layer

 TVM, Triton, ONNX

● Translates the IR into optimized kernels and
executable code for specific devices.

Kernel Library
cuDNN, cuBLAS, CUTLASS

Hardware Backend
CPU, GPU, AI Accelerator

● The physical devices executing the
compiled and optimized models.

● Executes optimized kernels, manages device
memory, and provides primitives.

45

cuDNN (CUDA Deep Neural Network Library)

● High-performance GPU library for deep learning primitives
● Optimized implementations for:

○ Convolutions, pooling, normalization
○ Activation functions (ReLU, tanh, sigmoid)
○ RNN/LSTM layers

● Automatically used by TensorFlow, PyTorch, and JAX
● Enables Tensor Cores, mixed precision, and algorithm autotuning for

speedups

Chetlur, Sharan, et al. "cudnn: Efficient primitives for deep learning." arXiv preprint arXiv:1410.0759 (2014).

46

cuBLAS (CUDA Basic Linear Algebra Subprograms)

● GPU-accelerated version of BLAS (Basic Linear Algebra Subroutines)
● Provides fast operations for:

○ Matrix–vector and matrix–matrix multiplications (GEMM)
○ Vector scaling, addition, dot products

● Underpins many deep learning operations (e.g., dense layers, attention mechanisms)
● Also supports FP16 / BF16 precision for performance on modern GPUs
● cuDNN accelerates deep learning-specific ops, while cuBLAS accelerates general

linear algebra.
● Both are critical layers in the GPU software stack that make frameworks like

TensorFlow and PyTorch fast.

47

Topics
● Federated Learning (Continue)
● Deep Learning Software/Compiler
● Hardware System Overview

48

Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network training and inference.

○ GPU leverages the highly parallelized architecture of its computing units to handle
computational intensive operations.

○ GPU has 10x-20x higher throughput than CPU.
● However, GPU:

○ General purpose.
○ Power consumption and latency is high.
○ Does not support sophisticated pruning and quantization algorithms.

49

Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

50

Flexibility & Performance

ASIC

FPGA

GPU

CPU

Flexibility

Energy
efficiency

MOPS/W

GOPS/W

TOPS/W
CGRA

● ASIC offers the highest energy
efficiency but is only suitable for
specific applications.

● The CPU is a general-purpose
processor but has the lowest energy
efficiency.

51

AI Accelerator
● Making any chip is a costly, difficult and lengthy process typically done by teams of 10 to

1000’s of people depending on the size and complexity of the chip.

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
fileCPU

Compute
core

AI Accelerator
~GB

52

AI Accelerator
● The AI accelerator can execute part of the machine code that is related to the AI workload.

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU Compute
core

NoC

CPU

DRAM

AI
accelerator

…

AI Accelerator

GPU

53

AI Accelerator

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU
Compute

core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

● The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix
multiplication.

● It also contains vector multiplier MAC as well as special function unit.

54

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

01001000 10001001 11011000
01001000 10000011 11000000 00001010
01001000 10000011 11101011 00000101
01001000 00111001 11011000
01110100 00000101
01001000 10001001 11000001
01001000 01101001 11001001 00000010
01001000 10001001 00001111
11101011 00000011

import torch
import torch.nn as nn
input = torch.randn(1, 1, 5, 5)
conv = nn.Conv2d(1, 1, kernel_size=3)
output = conv(input)
print(output)

Compiler

55

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

NoC

CPUAI
accelerator

…GPU

DRAM

56

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

NoC

CPUAI
accelerator

…GPU

DRAM

57

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

RF

Compute
core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

58

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

RF

Compute
core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

D
R

A
M

W01

W10

W11

X01

X10

X11

W00X00

59

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00W00

X00
0

W00

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

60

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

X10

W01

W00X00

Y00

= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

61

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

X01

W00

0

Y00

= Y00 Y01

Y10 Y11

X01W00

W01

W10

W11

X01

X10

X11

W00X00

62

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

W01

W10

W11 X11

X01

X10

X11

W01

Y00

= Y00 Y01

Y10 Y11

Y01

W00X01

W00X00

…

63

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

W01

W10

W11 X11

X01

X10

X11

W11
Y00

= Y00 Y01

Y10 Y11

Y11

W10X01

Y01

W00X00

…
Y11

Y10

64

Memory Access Reduction
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI AcceleratorX10

W01

W00X00

Y00

W01

W10

W11

X01

X10

X11

W00X00

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

W01

W10

W11

X11

X01

X10

X11

W01
Y00

0

W00X00

W01X11

● The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.

65

Memory Access Reduction

W01

Weight
SRAM

Compute
core

W01

Weight
SRAM

Compute
core

… W01

Weight
SRAM

Compute
core

● It is preferable to minimize memory access by maximizing the reuse of loaded data.
● We will explore methods for scheduling neural network layer accesses to minimize

memory usage in the next lecture.

