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Lecture 10:
Machine Learning Compiler and
System



Some Notes

First round of team meeting on Dec 1 and Dec 2.

Lab 2 grades have been posted.

Lab 3 is due this Sunday.

Will have the office hour on Thursday 6-7pm.
Midterm grade will be posted by this weekend.
Will add extra-credit quiz
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Recap

Speculative Decoding
Distributed DNN Training
Distributed DNN Inference
Federated Learning
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Topics

e Federated Learning (Continue)
e Machine Learning Compiler
e Machine Learning System
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Federated Learning
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Federated Learning

e Federated learning is a machine learning technique

Central that allows the training of models across multiple

node decentralized nodes holding local data samples,
fagregate without exchanging their data
RAANR o |
/ N
,’/ K \\\ \\ e This approach enhances privacy, user can train the
g / \ RN powerful DNN model without sharing the dataset.
el [ [
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial

NYU SAI LAB intelligence and statistics. PMLR, 2017.




e Aglobal model is initialized on the central node and sent
to all participating nodes .

W; = Wgylobal Foreach i

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
intelligence and statistics. PMLR, 2017.



FedAvg

Step

w, = minL(F(D;),Y;)

Central % w;
node
Global
R \ S model
RN e Each node i trains the global model locally
R RN using its own data for a few epochs.

¥ 4
Edge ™38 & Q%@é o -
nodes O ' O ot S The length of local training process may vary.

NYU ‘SAI LAB McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial

intelligence and statistics. PMLR, 2017.




Central Aw; = w — w;
node
/;V AN e Local updates are sent from each node to the central
AR node.
4 / \ ~
R g B

NYU 8 I L B McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
A A intelligence and statistics. PMLR, 2017.




e The central node aggregates the local updates

node to update the global model.

w—i—%z’i:Awi

NYU 8 I L B McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial
A A intelligence and statistics. PMLR, 2017.
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Federated Learning Problems: Non-IID

e However, in FL, the data distributed across different devices or clients is not drawn from
the same statistical distribution.

e Unlike the scenario distributed training, where the training data are randomly distributed.
For FL, the data stored in each device is highly biased.

e This may lead to significant accuracy degradation
for the global model.

Al E
o User
2 devices
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Federated Learning Problems: Heterogeneity

e Different edge device may have different
processing speed.

e This will cause the total latency of each training
round bottlenecked by the straggler, leading to a
slow convergence of the training process.

User
devices
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Federated Learning Problems:

Communication

N

User
devices
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The communication between edge devices and
central cloud may incur transmission loss or error.
This will impact the training latency and accuracy.
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Federated Learning Problems: Privacy
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User
devices

The attacker can leverage the transmitted gradient
to reconstruct the original input training data.
This will lead to privacy leakage.

14



Federated Learning with Non-iid Data

The training sets are evenly partitioned
into 10 clients.

%660 (a) MNIST B8 (b) CIFAR-10
0.975] 0.8 For IID setting, each client is randomly
0.050] f I 0.7 assigned a uniform distribution over 10
> 1
2 0.925 0.6 classes.
3 0.51
g 9390 4 Bk For non-IID setting, the data is sorted
7 B=1000 SGD # B=1000 SGD s
808751 | i 0.3 G by class and divided to create two
0.850] || B=100 E=1 Non-IID(2) B=100 E=1 Non-IID(2) extreme cases: (a) 1-class non-IID,
’ —— B=100 E=1 Non-IID(1) 0.2 —— B=100 E=1 Non-IID(1) . .
—— — B=100 E=5 Non-IID(1) — B=100 E=5 Non-IID(1) where each client receives data
' J e el | e ] partition from only a single class, and
0.800 0.0
0 100 200 300 400 500 0 100 200 300 400 500 (b) 2-class non-IID, where the sorted
Communication rounds Communication rounds data is divided into 20 partitions and
each client is randomly assigned 2
partitions from 2 classes.
NYU SAI LAB Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018). 15




Federated Learning with Non-iid Data

e \We propose a data-sharing strategy to improve FedAvg with non-lID data by creating a small
subset of data which is globally shared between all the edge devices.

e Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only
5% globally shared data.

NYU SAI LAB Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).
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FedProx

a t M t2
: min hg (w; w') = Fr(w) + =||lw — w*||
Algorithm 2 FedProx (Proposed Framework) w )
Imput: K, T, p, v, w?, N, pp, k=1,--- ,N
fort=0,---,T—1do

Server selects a subset S; of K devices at random (each

® \We add an extra term to minimize the |2

device k is chosen with probability py) distance between the initial weight wt and
Server sends w' to all chosen devices the learned weight w.

Each chosen device k € 5 finds a wi™ o This loss ensures that the learnt w is not
which is a < -inexact minimizer of: ?ﬁQ R too different from the original W

arg min,, hy(w; w') = Fi(w) + §ljlw —w
Each device k € S; sends wi" back to the server
Server aggregates the w’s as w'™' = £ >, o wi™

end for

NYU 8 AI L AB Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 ”

(2020): 429-450.




Federated Learning Problems: Heterogeneity

% oinmosl ® End devices will have heterogeneous
system configuration.
e HeteroFL partitions and assigns the
DNN based on the processing power

. i '\ ~ .
DNN mapping ,* ¢ '\ “~_ of each device.
’ VI \ AN e Each device only train a subset of the

DNN model.

v
y
User
devices D D

U Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for
NY ‘SAI LAB heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020). 18




HeteroFL

Global model parameters W,

e Each edge device will be assigned with
part of the neural network to perform local
training based on its computational
complexity.

’ Local model parameters WIS

Local model parameters Wl2

Local model parameters VV,l

Diao, Enmao, Jie Ding, and Vahid Tarokh. "Heterofl: Computation and communication efficient federated learning for

NYU SAI LAB heterogeneous clients." arXiv preprint arXiv:2010.01264 (2020).
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Federated Learning Problems:

Communicatimll

e(u, ) = § >;_; I(sgn(u;) = sgn(;))

e Uj denotes the sign of the model weight after local updates.
Our solution dynamically identifies relevant local updates and excludes
those irrelevant from being.

e Only the local device with high relevance will transmit their weight to the
central server.

NYU SAI LAB Luping, W.; Wei, W.; and Bo, L. 2019. Cmfl: Mitigating communication overhead for federated learning. In 2019 IEEE 39th 20

International Conference on Distributed Computing Systems (ICDCS), 954-964. IEEE.




FedMARL

Final model Total Training _
Accuray Latency Total Bandwidth
m/?XE [wlAcc(T) — Wo E Hi — ws E Bt}
teT teT
L T Client
A — [Cln] Selection

e Our objective is to maximize the accuracy of the global model while minimizing the total processing latency
and communication cost.

e w1,w2,w3 are the importance of the objectives controlled by the FL application designers.

e The FL optimization problem is difficult to solve directly. We instead model the problem as a MARL
problem.

U ‘8 I L Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in
NY A AB federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022.
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FedMARL

MARL \ Rewards 7'
agents Agent 1
— stl — % at1 — (" Environment )
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e In FedMarl, each client device n relies on an MARL agent at the central server to make its
participation decision. Each MARL agent contains a simple two-layer Multi-layer perceptron (MLP)
that is cheap to implement.

NYU SAI LAB

Zhang, Sai Qian, Jieyu Lin, and Qi Zhang. "A multi-agent reinforcement learning approach for efficient client selection in

federated learning." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 8. 2022. 2



FedMARL

Test accuracy (%)
S (6))]
o o
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Test accuraqies of VGG6 on CIFAR-10
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~—©— Our approach
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Training round

e Every random dropping is better than FedAvg.
e FedMarl is much better than random dropping and FedAvg.

NYU SAI LAB
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Distributed LLM Inference with Speculative Decoding

Block Cloud
Block
Block

Block

|

|

|

Verify model

"

~

"
7

[ Edge device 1 [ Edge device 2

=) o

£ |(Block] D £ |(Block] [:!D

g g d =

(a] (] -
NYU SAI LAB

Li, Tianhong, et al. "Autoregressive Image Generation without Vector Quantization." arXiv

Draft model

Edge device N

Block D
e -
3

preprint arXiv:2406.11838 (2024).

Speculative decoding provides a
lossless solution for distributed
LLM execution.

A small draft model can execute
in sensor to produce draft tokens,
and then send to aggregator for
verification.
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DLoRA: Distributed parameter-efficient
fine-tuning solution for large language model
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LLMs need to be finetuned in real time to better adapted to the downstream tasks.
For resource-limited device, this finetuning process will consume a lot of latency and power.

We propose distributed LLM finetuning techniques to deployed over the edge devices.

Gao, Chao, and Sai Qian Zhang. "Dlora: Distributed parameter-efficient fine-tuning solution for large language model."

EMNLP (2024).
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Topics

e Federated Learning (Continue)
e Deep Learning Software/Compiler
e Machine Learning System

NYU SAI LAB
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ML Frameworks
PyTorch, TensorFlow, Chainer,

L Caffe, Theano

J

& Graph Optimization Layer

L TorchDynamo, FX, ONNX

(" Intermediate Representation (IR) )

J

Layer
TVM, Triton, ONNX

-

(" IML Compiler / Code Generation )

N

Kernel Library
cuDNN, cuBLAS, CUTLASS

J

~N

Hardware Backend
CPU, GPU, Al Accelerator

NYU SAI LAB

ML Software—Compller stack

High-level interfaces where models
are defined, trained, and debugged.

Converts model definitions into an
analyzable graph IR for optimization.

Translates the IR into optimized kernels and
executable code for specific devices.

Executes optimized kernels, manages device
memory, and provides primitives.

The physical devices executing the

compiled and optimized models.
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Deep Learning Frameworks

\_

theano .

Graph Mode

1

Catte

orFlow

J

\_

Eager Mode
PYTHRCH

Deep Learning with PyTorch

‘o

Chainer

J

e Graph mode: where they expose a graph building API that requires users to first

construct a graph and then later execute that graph.

e Eager mode: meaning operations are executed immediately as they are called in

Python, rather than being added to a static computation graph (as in early TensorFlow).

NYU SAI LAB
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Deep Learning Frameworks

( ) ( )
Graph Mode Eager Mode

1 PYTHRCH
theano .

6rFIow
<o
Caffe Chainer

J g J

e Graph mode: where they expose a graph building API that requires users to first
construct a graph and then later execute that graph.

e Eager mode: meaning operations are executed immediately as they are called in
Python, rather than being added to a static computation graph (as in early TensorFlow).
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Pytorch

class LinearLayer(Module):
def __init__(self, in_sz, out_sz):
super().__init__(Q)
t1 = torch.randn(in_sz, out_sz)
self.w = nn.Parameter(t1)
t2 = torch.randn(out_sz)
self.b = nn.Parameter(t2)

def forward(self, activations):

t = torch.mm(activations, self.w)
return t + self.b

e [nherit from Chainer.

class FullBasicModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 128, 3)
self.fc = LinearLayer (128, 10)

def forward(self, x):
t1 = self.conv(x)
t2 = nn.functional.relu(t1)
t3 = self.fc(t1)
return nn.functional.softmax(t3)

I

1]

discriminator = create_discriminator()
generator = create_generator()

optimD = optim.Adam(discriminator.parameters())
optimG = optim.Adam(generator.parameters())

def step(real_sample):
# (1) Update Discriminator
errD_real = loss(discriminator(real_sample), real_label)
errD_real .backward()
fake = generator(get_noise())
errD_fake = loss(discriminator(fake.detach(), fake_label)
errD_fake.backward()
optimD.step()
# (2) Update Generator
errG = loss(discriminator(fake), real_label)
errG.backward()
optimG.step()

e DNN models can be programmed. APl is defined to make user freely select the layer configuration.
e This “everything is a just a program” philosophy is not limited to just the models, and applies to
optimizers and data loaders as well.

NYU SAI LAB
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Pytorch

e PyTorch allows for bidirectional exchange of data with external libraries.

o For example, it provides a mechanism to convert between NumPy arrays and
PyTorch tensors using the torch.from_numpy() function and .numpy() tensor
method.

o Pytorch has implemented an automatic differentiation functionality to automatically

performance the gradient computation.

import torch

x = torch.tensor (2.0, requires_grad=True) y.backward()
y = X*2+x%*3
@ @ print(x.grad)
Paszke, Adam, et al. "Pytorch: An imperative style, high-performance
NYU S AI L AB deep learning library." Advances in neural information processing 31

systems 32 (2019).



Pytorch

e \What if the function is not differentiable? How to generate gradient?

O O O O

NYU SAI LAB

Subgradients or Piecewise Derivatives
Approximation Gradients

Customized gradient definition
Compilation Error

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural
information processing systems 32 (2019).
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Pytorch

e Subgradients or Piecewise Derivatives e Customized gradient definition

import torch

x = torch.tensor (0.0, requires_grad=True) class CustomOp(torch.autograd.Function):

y = torch.abs(x) @staticmethod

y.backward() def forward(ctx, x):

print(x.grad) # prints 0.0 ctx.save_for_backward(x)

return torch.sign(x)
. ) @staticmethod
e Straight-Through Estimator (STE) def backward(ctx, grad_output):
. . X, = ctx.saved_tensors
def sjzazi—ftg?fitgéizs grad_input = grad_output * (x.abs()

<= 1).float() # custom surrogate

y.backward = lambda grad: grad # return grad_input

approximate grad as 1

U 8 I L B Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural 3
N Y A A information processing systems 32 (2019).




Pytorch

e PyTorch maintains a strict separation between its control (i.e. program branches, loops) and data
flow (i.e. tensors and the operations performed on them).

e The resolution of the control flow is handled by Python and optimized C++ code executed on the
host CPU, and result in a linear sequence of operator invocations on the device. Operators can be
run either on CPU or on GPU.

e Memory allocation is first performed on the CPU, which subsequently manages the allocation and
mapping on the GPU.

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural

NYU SAI LAB information processing systems 32 (2019). 34




ML Software-Compiler stack

G

ML Frameworks
PyTorch, TensorFlow, Chainer,
Caffe, Theano

J

.

(" Intermediate Representation (IR) )

& Graph Optimization Layer
TorchDynamo, FX, ONNX

J

-

( ML Compiler / Code Generation

Layer
TVM, Triton, ONNX

~

Kernel Library
cuDNN, cuBLAS, CUTLASS

J

Hardware Backend
CPU, GPU, Al Accelerator

NYU SAI LAB

High-level interfaces where models
are defined, trained, and debugged.

Converts model definitions into an analyzable graph
Intermediate Representation (IR) for optimization.

Translates the IR into optimized kernels and
executable code for specific devices.

Executes optimized kernels, manages device
memory, and provides primitives.

The physical devices executing the

compiled and optimized models.
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TensorFlow

e Open-source ML framework by Google (2015)
e Supports CPU, GPU, TPU acceleration

@)
@)
@)

Neural networks (CNNs, RNNs, Transformers)
Reinforcement learning
Signal processing and scientific computing

e TensorFlow builds a static computation graph (predefined dataflow)

@)
@)

Graph nodes = operations
Edges = data (tensors)

e Optimizable and deployable on different hardware
e Enables parallelism and graph-level optimizations

NYU SAI LAB

Abadi, Martin, et al. "{TensorFlow}: a system for {Large-Scale} machine learning." 12th USENIX symposium on operating
systems design and implementation (OSDI 16). 2016.
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TensorFlow

import tensorflow as tf import tensorflow as tf

x = tf.constant(3.0) x = tf.constant(3.0)

y = tf.constant(4.0) y = tf.constant(4.0)

z=x"*y # <-- nothing runs yet, just builds the z =x*y # executed immediately

graph print(z)

print(z)

Tensor("mul:0", shape=(), dtype=float32) tf. Tensor(12.0, shape=(), dtype=float32)

with tf.Session() as sess:
print(sess.run(z)) # Output: 12.0

U 8 I L Abadi, Martin, et al. "{TensorFlow}: a system for {Large-Scale} machine learning." 12th USENIX symposium on operating
NY A AB systems design and implementation (OSDI 16). 2016.
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Graph-level Optimization

import torch

X = torch.tensor (2.0, requires_grad=True)
y = X*2+x%3
+ [
import torch
X = torch.tensor (2.0, requires_grad=True)
y = xx(2+3)
+

The downside of eager mode frameworks is

[ [
that they make it harder to apply graph-level
optimizations through compilers.

Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library." Advances in neural

NYU S AI L AB information processing systems 32 (2019).
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Torch.fx

import torch
import torch.nn as nn
import torch.nn.functional as F

class RedundantModel(nn.Module):
def __init_ (self):
super().__init_ ()
self.fc1 = nn.Linear(4, 8)
self.fc2 = nn.Linear(8, 8)
self.fc3 = nn.Linear(8, 2)

def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.relu(x) # redundant ReLU
x = self.fc2(x)
x = F.relu(x)
return self.fc3(x)

from torch.fx import symbolic_trace

model = RedundantModel()
gm = symbolic_trace(model)
print(gm.graph)

graph():
%x = placeholder[target=x]
%fc1 = call_module[target=fc1](args=(%x,), kwargs={})
Y%relu_1 = call_function[target=torch.nn.functional.relu](args=(%fc1,), kwargs={})
Y%relu_2 = call_function[target=torch.nn.functional.relu](args=(%relu_1,), kwargs={})
%fc2 = call_module[target=fc2](args=(%relu_2,), kwargs={})
Y%relu_3 = call_function[target=torch.nn.functional.relu](args=(%fc2,), kwargs={})
%fc3 = call_module[target=fc3](args=(%relu_3,), kwargs={})
return %fc3

Ansel, Jason, et al. "Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph

NYU 8 AI L AB compilation." Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2. 2024.
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Torch.fx

def remove_redundant_relu(gm): . I .
new_graph = torch.fx.Graph() Torch.fx provides the flexibility to modify and

env = {} transform the computation graph, enabling
performance and efficiency improvements.
last_op = None
for node in gm.graph.nodes:
if node.op == "call_function' and node.target == torch.nn.functional.relu:
# Skip consecutive ReLU nodes
if last_op == torch.nn.functional.relu:
continue
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
last_op = node.target if node.op == 'call_function' else None

gm_optimized = torch.fx.GraphModule(gm, new_graph)
return gm_optimized

Ansel, Jason, et al. "Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph

NYU 8 Al L AB compilation." Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2. 2024.
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ML Software-Compiler stack

G

ML Frameworks
PyTorch, TensorFlow, Chainer,
Caffe, Theano

J

G

(" Intermediate Representation (IR) )

& Graph Optimization Layer
TorchDynamo, FX, ONNX

J

S

( ML Compiler / Code Generation

Layer
TVM, Triton, ONNX

~

Kernel Library
cuDNN, cuBLAS, CUTLASS

J

Hardware Backend
CPU, GPU, Al Accelerator
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High-level interfaces where models
are defined, trained, and debugged.

Converts model definitions into an
analyzable graph IR for optimization.

Translates the IR into optimized kernels and
executable code for specific devices.

Executes optimized kernels, manages device
memory, and provides primitives.

The physical devices executing the

compiled and optimized models.
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Triton

e An open-source compiler and language (originally by Harvard/OpenAl, now integrated
into PyTorch)

e Allows writing custom GPU kernels in Python, achieving CUDA-level performance with
much simpler code

e Automatic tiling & vectorization for performance portability

e Fusion-friendly: easily integrates with PyTorch’s graph optimizers

Tillet, Philippe, Hsiang-Tsung Kung, and David Cox. "Triton: an intermediate language and compiler for tiled neural
NYU S AI L AB network computations." Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and 42

Programming Languages. 2019.



Triton

import triton

import triton.language as tl

@triton.jit

e Writing efficient GPU kernels in CUDA is
complex and error-prone.

e Researchers often need custom fused

def matmul_kernel(a_ptr, b_ptr, ¢_ptr, M, N, K): kernels beyond what cuDNN/cuBLAS

pid = tl.program_id(0)

offer.

row = pid * 16 + tl.arange(0, 16)

col = tl.arange(0, 16)

a = tl.load(a_ptr + row[:;, None] * K + tl.arange(0, K))
b = tl.load(b_ptr + tl.arange(0, K)[:, None] * N + col)
c = tl.dot(a, b)

tl.store(c_ptr + row[:, None] * N + col, ¢)

NYU SAI LAB

e Frameworks like PyTorch needed a
flexible but high-performance solution.

e Triton bridges this gap: Python-like
syntax with compiler-grade optimization.

Tillet, Philippe, Hsiang-Tsung Kung, and David Cox. "Triton: an intermediate language and compiler for tiled neural
network computations." Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and 43
Programming Languages. 2019.



ML Software-Compiler stack

-

G

ML Frameworks
PyTorch, TensorFlow, Chainer,
Caffe, Theano

~

J

G

(" Intermediate Representation (IR) )

& Graph Optimization Layer
TorchDynamo, FX, ONNX

J

-

(" ML Compiler / Code Generation

Layer
TVM, Triton, ONNX

~

Kernel Library
cuDNN, cuBLAS, CUTLASS

J

Hardware Backend
CPU, GPU, Al Accelerator
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High-level interfaces where models
are defined, trained, and debugged.

Converts model definitions into an
analyzable graph IR for optimization.

Translates the IR into optimized kernels and
executable code for specific devices.

Executes optimized kernels, manages device
memory, and provides primitives.

The physical devices executing the

compiled and optimized models.
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cuDNN (CUDA Deep Neural Network Library)

e High-performance GPU library for deep learning primitives
e Optimized implementations for:
o Convolutions, pooling, normalization
o Activation functions (RelLU, tanh, sigmoid)
o RNN/LSTM layers
e Automatically used by TensorFlow, PyTorch, and JAX
e Enables Tensor Cores, mixed precision, and algorithm autotuning for
speedups

NYU SAI LAB Chetlur, Sharan, et al. "cudnn: Efficient primitives for deep learning." arXiv preprint arXiv:1410.0759 (2014).




cuBLAS (CUDA Basic Linear Algebra Subprograms)

e GPU-accelerated version of BLAS (Basic Linear Algebra Subroutines)
e Provides fast operations for:
o Matrix—vector and matrix—matrix multiplications (GEMM)
o Vector scaling, addition, dot products
e Underpins many deep learning operations (e.g., dense layers, attention mechanisms)
e Also supports FP16 / BF16 precision for performance on modern GPUs
e CcuDNN accelerates deep learning-specific ops, while cuBLAS accelerates general
linear algebra.
e Both are critical layers in the GPU software stack that make frameworks like
TensorFlow and PyTorch fast.

NYU SAI LAB w




Topics

e Federated Learning (Continue)
e Deep Learning Software/Compiler
e Hardware System Overview
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Hardware Support for DNN

e GPU is better than CPU in terms of throughput for both Neural Network training and inference.
o GPU leverages the highly parallelized architecture of its computing units to handle
computational intensive operations.
o GPU has 10x-20x higher throughput than CPU.
e However, GPU:
o General purpose.
o Power consumption and latency is high.
o Does not support sophisticated pruning and quantization algorithms.

NYU SAI LAB
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Hardware Support for DNN

e ASIC-based implementations have been recently explored to accelerate the DNN inference.
o  Google’s TPU, Apple’s Neural Engine, Cerebras Al chip, ...

e FPGA-based accelerators for DNN inference have been recently developed.
o  Has good programmability and flexibility
o  Short development cycles
o  Can be used as a benchmark before implementing on ASIC

| ——

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)
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Flexibility & Performance

Energy
efficiency .

A e ASIC offers the highest energy

rors/i % efficiency but is only suitable for

@ specific applications.
GOPS/W @
MOPS /i @ e The CPU is a general-purpose
|=|exibi|ity’ processor but has the lowest energy
efficiency.
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Al Accelerator

e Making any chip is a costly, difficult and lengthy process typically done by teams of 10 to
1000’s of people depending on the size and complexity of the chip.

CPU <> Re]%l:ter \évr\?fl\r/]lt Normalized Energy Cost
\L 1x (Reference)
- Wz 0.5-1.0kB
g < M g' <_) Compute NoC: 200 - 1000 PEs [ PE]
=Z <5 core 100 - 500 kB
~ -1 AL
Al Accelerator °= Bk
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Al Accelerator

e The Al accelerator can execute part of the machine code that is related to the Al workload.

il 11
Yi -

Register| | Weight

- file SRAM Al
O ¢ accelerator CPU GPU
-> >
CPU <- g s 1@ el C t ¢ ¢ ¢

< [ZL]2 5 []~cmpute NoC

=5 core $

3 U
Al Accelerator | DRAM
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Al Accelerator

5;' ___________________________ 11
< | |Register| [ Weight
—— _) . ,
o file SRfM A Vector MAC
A - :
CPU <c:zx 3§> w3 Matrix MAC 10
<= £5| 8 < [<|Compute 538
5 core o
-]
Al Accelerator |-

e The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix

multiplication.
e It also contains vector multiplier MAC as well as special function unit.
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Al Accelerator

01001000 10001001 11011000
01001000 10000011 11000000 00001010

import torch 01001000 10000011 11101011 00000101
import torch.nn as nn C ; 01001000 00111001 11011000
X ompiler
— ZZECt-:nE"EEE;ES?T”(i’ iériélsiize%) ' ° 812)1)210%%2%%%%%11 11000001
- . ) ) — -
‘ output = conv(input) 01001000 01101001 11001001 00000010
print(output) 01001000 10001001 00001111
11101011 00000011
Al
accelerator CPU GPU
NoC
A
12
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Al Accelerator

Al

Al

accelerator CPU GPU
{ { {
NoC
DRAM
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Al Accelerator

Al Al

e | GPU |- accelerator CPU GPU |-
{ { { ¥ ] ]
NoC N NoC
DRAM DRAM
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Al Accelerator

ro S SSIIISIIIIT i
Yi Y1
RF Weight
X10  Who :(Z; L ' Matrix MAC || - |
Xo1 Wor | £ [ 5 [ Compute 538
X1 W11 <3 core s =
)
Al Accelerator--

Woo Wo1 5 Xoo Xo1 [ _ [ WooXoo+Wo1X10 WooXo1+Wo1X11[_ | Yoo Yo
W10 W11 X10 X11 W10Xoo+W11X10 Wi10Xo1+W11X11 _Y10 Y11
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Al Accelerator

M e e - 11
Y1 Y1
RF Weight
Xoo Woo o SRf‘M Vector MAC
X10  Who :(Z; L ' Matrix MAC || - |
Xo1 Wor | = [<C[]R 5 [|Compute 538
X1 Wi = core se
)
Al Accelerator--

Woo Wo1 5 Xoo Xo1 [ _ [ WooXoo+Wo1X10 WooXo1+Wo1X11[_ | Yoo Yo
W10 W11 X10 X11 W10Xoo+W11X10 Wi10Xo1+W11X11 _Y10 Y11

NYU SAI LAB




Al Accelerator

B Welght
Xoo Woo - --F-----=--- > SRAVI\<|/
X10 Wio :(23 > v Woo
a |Xoo\Woo
Xot Woi| 2 [«1{D2< Compute
-1 >0 —>
X1 W =5| 0 core
=1 Xoo
Al Accelerator

Woo Wo1 % Xoo Xo1 | _ | WooXoo+Wo1X10 WooXo1+Wo1X11|_ [ Yoo Yo1
W10 W11 X10 X11 W10Xo0+W11X10 W10Xo1+W11X11 Y10 Y11
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Al Accelerator

B Welght

I >| SRAM
Xoo  Woo % ¢W01
X0 Wi | > w&| Yoo

< T8 Compute
Xo1 Wo1 - - > 9 L —
< o' |WooXoo| Core
X1 W11 > %10
Al Accelerator

Woo Wo1 % Xoo Xo1 | _ | WooXoo+Wo1X10 WooXo1+Wo1X11|_ [ Yoo Yo1
W10 W11 X10 X11 W10Xo0+W11X10 W10Xo1+W11X11 Y10 Y11
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Al Accelerator

B Welght
Yoo --F---=-=-=-=-- >| SRAM
Xoo Woo | & v Woo
X >
X100 Wi | > v & [Xo1Woo
Xo1  Wo1 = N [] § §'<_)Compute
0 =35 0 core
X1 W11 51 Xor
Al Accelerator

Woo Wo1| | Xoo Xo1|_ | WooXoo+Wo1X10 WooXo1+Wo1X11[_ | Yoo Yo
W10 Wit X10 X11 W10Xo0+W11X10 W10Xo1+W11X11 Y10 Y11
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Al Accelerator

B Welght
Yoo -—-fF-=——-===-- >| SRAM
Xoo  Woo % ¢W01
X0 Wi | > w&| Yo
< T8 Compute
Xo1 Wo1 - - > 9 L ——
< o | WooXor core
X1 Wi+ 51 X4
Al Accelerator

Woo Wo1 5 Xoo Xo1 [ _ [ WooXoo+Wo1X10 WooXo1+Wo1X11[_ | Yoo Yo
W10 W11 X10 X11 W10Xo0+W11X10 W10Xo1+W11X11 Y10 Y11
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Al Accelerator

Yor Yo « o oo oo Weight
Yoo Y11 -—fF=—————-- > SRAM
Xoo  Woo % v Wi
X0 Wi | > w &l Y

< T8 Compute
Xo1  Wos1 - >0l —>

= o' |WioXo1| cCore
X1 Wit > 1 X
Al Accelerator

Woo Wo1| [ Xoo Xo1|_ | WooXoo+Wo1X10 WooXo1+Wo1X11[_ | Yoo Yo
Wio Wit [ X1o X1t Wi1oXoo+W11X10 WioXo1+W1iX11| | Y10 Y1t
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Memory Access Reduction

B Weight do o ___1 eight
IS il > SRAM | Yoo IS il -)%AM
Xoo Woo | 5 vWor Xoo Woo | 5 yWo1
X10 W1o | > w&| Yoo X10 W1o | > o & [WoiXi
< KT8 Compute < K113 Compute
Xo1 Wo1 L - >0l —> Xo1 Wo1 L ->> o >
=< 5 [WooXoo| coOre =5 o core
X1 W11 > X1 W11 >
X10 Al Accelerator X11 Al Accelerator

e The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.
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Memory Access Reduction

e ltis preferable to minimize memory access by maximizing the reuse of loaded data.
e We will explore methods for scheduling neural network layer accesses to minimize
memory usage in the next lecture.

Weight

SRAM

Weight Weight
SRAM SRAM
yWoi ¥ Wor
Compute Compute
core core
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